US 20180158227A1

a2y Patent Application Publication o) Pub. No.: US 2018/0158227 A1l

a9y United States

Reshetov et al.

(54) INFINITE RESOLUTION TEXTURES

(71) Applicant: NVIDIA Corporation, Santa Clara, CA
(US)

(72) Inventors: Alexander V. Reshetov, San Jose, CA
(US); David Patrick Luebke,
Charlottesville, VA (US)

(21) Appl. No.: 15/367,086

(22) Filed: Dec. 1, 2016

Publication Classification

(51) Int. CL
GO6T 15/04
GO6T 1/20
GO6T 7/00

(2006.01)
(2006.01)
(2006.01)

43) Pub. Date: Jun. 7, 2018
(52) U.S. CL
CPC ... GO6T 15/04 (2013.01); GOGT 2207/10004

(2013.01); GO6T 7/0085 (2013.01); GO6T 1/20
(2013.01)

(57) ABSTRACT

A method, computer readable medium, and system are
disclosed for generating and utilizing infinite resolution
texture acceleration data structures. The method for gener-
ating an infinite resolution texture acceleration data structure
includes the steps of receiving an image; generating an
infinite resolution texture acceleration data structure asso-
ciated with the image that includes a texture map, a curve
index map, and a curve data map; and storing the infinite
resolution texture acceleration data structure in a memory.
The texture map is a two-dimensional array of texels, each
texel encoding a color value based on the image. The curve
data map encodes parameters for at least one curve segment
associated with the image. The curve index map associates
each texel in the texture map with zero or more curve
segments corresponding with the texel.

800

810

Patent Application Publication Jun. 7,2018 Sheet 1 of 15 US 2018/0158227 A1

100

(Start)

Receive an image
102

Generate an Infinite Resolution Texture acceleration data
structure associated with the image
104

Store the IRT acceleration data structure in a memory
106

End

Fig. 1

Patent Application Publication

Jun. 7,2018 Sheet 2 of 15

US 2018/0158227 Al

PPU 200

/O Unit

System Bus 202

Memory

205

Host Interface Unit

210

A

v
Front End Unit
215
A

v
Scheduler Unit
220

A

v
Work Distribution Unit
225
A

v

GPC
250(X)

204) :

L e - ——

Patent Application Publication Jun. 7,2018 Sheet 3 of 15 US 2018/0158227 A1

GPC 250

Pipeline Manager PROP
310 315

Primitive Engine I
335 .
Raster Engine

325

|
TPC 320(V -~

MMU
390

Fig. 34

Patent Application Publication Jun. 7,2018 Sheet 4 of 15 US 2018/0158227 A1

From XBar 270

A

Partition 280
ROP 350
ROP Manager
355
CROP ZROP - To
352 354 "~ XBar 270
Y
L2 XBar
365
4
\
L2 - To
360 " XBar 270

:

Memory Interface
370

\ 4

To Memory 204

Fig. 3B

Patent Application Publication Jun. 7,2018 Sheet 5 of 15

US 2018/0158227 Al

SM 340

Instruction Cache 405

Scheduler Unit 410(K)

1

1

!
|

Dispatch 415 Dispatch 415 ¥
|

|

H

Core

450(1)

_—— | — —

—_ —_———

Interconnect Network 480

Shared Memory 470 L1 Cache 490

Fig. 4

Patent Application Publication Jun. 7,2018 Sheet 6 of 15 US 2018/0158227 A1

SoC 500

CPU 550 PPU 200

System Bus 202

¢

MMU
590

¢

Memory Interface 585

B

1

Memory 204(U ::
|

|

I

|

Fig. 5

Patent Application Publication Jun. 7,2018 Sheet 7 of 15 US 2018/0158227 A1

Input Data
601 600

&

Data Assembly
610

Vertex Shading
620

Primitive Assembly
630

Geometry Shading
640

Viewport SCC
650

Rasterization
660

Texture
data
603

Fragment Shading
670

Raster Operations
680

v
Output Data
602

Fig. 6

Patent Application Publication Jun. 7,2018 Sheet 8 of 15 US 2018/0158227 A1

700

&

~
o
ErN

><l.,.\|
N
()]

~d
N
()]

710

Fig. 7
(prior art)

Patent Application Publication Jun. 7,2018 Sheet 9 of 15 US 2018/0158227 A1

800

&

Fig. 8

Patent Application Publication Jun. 7,2018 Sheet 10 of 15 US 2018/0158227 A1

800

Fig. 94

960

Fig. 9B

Patent Application Publication Jun. 7,2018 Sheet 11 of 15 US 2018/0158227 A1

image
1010

Preprocessing

1020
IRT 1000
Texture Map Curve Index Map Curve Data Map
1002 1004 1006

Compute duv
1030

Sample texture map
1040

Fig. 10

Patent Application Publication Jun. 7,2018 Sheet 12 of 15 US 2018/0158227 A1

820

&

1130

1110

1120

Fig. 11

Patent Application Publication Jun. 7,2018 Sheet 13 of 15 US 2018/0158227 A1

1200

&

Determine that a sample location x is influenced by at least one
curve segment
1202

Estimate a distance of the sample location to a curve segment
1204

Determine an adjustment vector based on the distance
1206

Calculate a new sample location based on the adjustment vector
1208

Sample the texture map using the new sample location
1210

{ End

Fig. 12

Patent Application Publication Jun. 7,2018 Sheet 14 of 15 US 2018/0158227 A1

(Start) 1300

&

Receive an image
1302

A

Determine an edge strength and gradient direction for each pixel
in the image
1304

ldentify a set of edge pixels based on the edge strengths and
gradient directions for the pixels in the image
1306

Calculate a set of metric values corresponding to neighboring
pixels for each edge pixel in the set of edge pixels
1308

A

Connect subsets of edge pixels based on the metric values
1310

A

Fit Bezier curve segments to each subset of edge pixels to
identify a plurality of curve segments
1312

Patent Application Publication

Jun. 7,2018 Sheet 15 of 15

CENTRAL
PROCESSOR
1401

MAIN MEMORY
1404

INPUT DEVICES
1412

SECONDARY
STORAGE
1410

GRAPHICS
PROCESSOR

DISPLAY
1408

Fig. 14

US 2018/0158227 Al

1400

&

US 2018/0158227 Al

INFINITE RESOLUTION TEXTURES
FIELD OF THE INVENTION

[0001] The present invention relates to graphics process-
ing, and more particularly to a technique for sampling
texture maps.

BACKGROUND

[0002] Graphics applications, such as computer games,
combine 3D geometric data with 2D texture data to generate
images. However, conventional texture mapping may cause
artifacts in the image under certain conditions. For example,
sampling a texture map at a particular resolution may break
down under scaling. Texture maps are registered to the
underlying 3D geometry using texture coordinates. While
the 3D geometry can be sampled at any scale, the texture
map is registered to the geometry at a particular scale (or
scales in the case of mip-mapped textures). Sampling these
texture maps at resolutions much different than the provided
scales may cause artifacts when the size of a texel varies
greatly compared to the size of a pixel.

[0003] However, the use of texture maps was not always
the way computer images were generated. Some of the
earliest rendering techniques were vector-based rather than
raster-based. In other words, images were rendered based on
parameterized line segments and curves that could be easily
rendered at any scale. Vector graphics continue to be used
today in areas where quality approximation is not accept-
able, such as in illustration and computer-aided design.
Vector graphic formats, such as PostScript or SVG, can be
conceptualized as programs that describe the process for
rendering an image composed of potentially overlapping
geometric primitives. For this reason, computing a color at
a particular pixel may necessitate executing the whole
“program” and can be inefficient in the context of graphics
applications like computer games where only a portion of an
image may need to be rendered and samples are irregularly
distributed. Furthermore, vector graphics formats tend to be
sequential in nature, which hinders any hardware optimiza-
tion that can be implemented to make them more efficient.
Thus, there is a need for addressing these issues and/or other
issues associated with the prior art.

SUMMARY

[0004] A method, computer readable medium, and system
are disclosed for generating and utilizing infinite resolution
texture acceleration data structures. The method for gener-
ating an infinite resolution texture acceleration data structure
includes the steps of receiving an image; generating an
infinite resolution texture acceleration data structure asso-
ciated with the image that includes a texture map, a curve
index map, and a curve data map; and storing the infinite
resolution texture acceleration data structure in a memory.
The texture map is a two-dimensional array of texels, each
texel encoding a color value based on the image. The curve
data map encodes parameters for at least one curve segment
associated with the image. The curve index map associates
each texel in the texture map with zero or more curve
segments corresponding with the texel.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 illustrates a flowchart of a method generat-
ing an infinite resolution texture acceleration data structure,
in accordance with one embodiment;

Jun. 7, 2018

[0006] FIG. 2 illustrates a parallel processing unit (PPU),
in accordance with one embodiment;

[0007] FIG. 3A illustrates a general processing cluster of
the PPU of FIG. 2, in accordance with one embodiment;
[0008] FIG. 3B illustrates a partition unit of the PPU of
FIG. 2, in accordance with one embodiment;

[0009] FIG. 4 illustrates the streaming multi-processor of
FIG. 3A, in accordance with one embodiment;

[0010] FIG. 5 illustrates a system-on-chip including the
PPU of FIG. 2, in accordance with one embodiment;
[0011] FIG. 6 is a conceptual diagram of a graphics
processing pipeline implemented by the PPU of FIG. 2, in
accordance with one embodiment;

[0012] FIG. 7 is a conceptual illustration of a pinching
operation associated with a pinchmap, in accordance with
the prior art;

[0013] FIG. 8 illustrates a raster image, in accordance with
one embodiment;

[0014] FIG. 9A illustrates a connection step in an edge
detection algorithm, in accordance with one embodiment;
[0015] FIG. 9B illustrates a continuous curve fit to a
sequence of edge pixels, in accordance with one embodi-
ment;

[0016] FIG. 10 illustrates the data flow to generate and
utilize an infinite resolution texture acceleration data struc-
ture, in accordance with one embodiment;

[0017] FIG. 11 illustrates a technique for calculating an
adjustment vector based on a proximate distance of a sample
location from a curve segment, in accordance with one
embodiment;

[0018] FIG. 12 illustrates a flowchart of a method for
generating a color sample utilizing an infinite resolution
texture acceleration data structure, in accordance with one
embodiment;

[0019] FIG. 13 illustrates a flowchart of a method for
detecting edges in an image, in accordance with one embodi-
ment; and

[0020] FIG. 14 illustrates an exemplary system in which
the various architecture and/or functionality of the various
previous embodiments may be implemented.

DETAILED DESCRIPTION

[0021] FIG. 1 illustrates a flowchart of a method 100 for
generating an infinite resolution texture acceleration data
structure, in accordance with one embodiment. It will be
appreciated that the method 100 is described within the
scope of software executed by a processor; however, in some
embodiments, the method 100 may be implemented in
hardware or some combination of hardware and software.
The method 100 begins at step 102, where a processor
receives an image. The image may be either a raster image
or a vector image in one of a variety of image file formats.
If the image is a vector image, the vector image may be
rendered at a fine resolution to generate a corresponding
raster image that will be used as a texture map.

[0022] At step 104, the processor generates an infinite
resolution texture (IRT) acceleration data structure. The IRT
acceleration data structure includes a texture map, a curve
index map, and a curve data map. The texture map is a
two-dimensional (2D) array of color values sampled from
the image at an appropriate resolution. In one embodiment,
the texture map may be identical to a raster image, or
resampled at a different resolution. In another embodiment,
the texture map may be produced by rendering a vector

US 2018/0158227 Al

image to generate a raster image at the appropriate resolu-
tion. In one embodiment, the texture map may be a MIP map
that includes a plurality of down-sampled versions of the
image, each down-sampled version of the image associated
with a different level of detail (LOD). The curve data map
encodes parameters for at least one curve segment associ-
ated with the image. The image may be analyzed using an
edge detection algorithm to identify the curve segments
associated with the image. The curve index map associates
each texel in the texture map with zero or more curve
segments corresponding with the texel. The IRT acceleration
data structure may be utilized to adjust texture coordinates
of sample locations in areas close to one of the curve
segments in the image.

[0023] At step 106, the processor stores the IRT accelera-
tion data structure in a memory. The memory may be
accessible by a parallel processing unit and, more specifi-
cally, by a texture unit associated with the parallel process-
ing unit. A pixel shader or fragment shader (i.e., a program
executed for each pixel/fragment in an image being ren-
dered) may be configured to access the curve index map
using texture coordinates for a sample location in order to
determine if any curve segments influence the sample loca-
tion. If there is at least one curve segment that influences the
sample location, then a new sample location may be deter-
mined based on an adjustment vector calculated utilizing
parameters for one or more curve segments stored in the
curve data map. The new sample location may then be used
to sample the texture map to calculate a color for the sample.
[0024] More illustrative information will now be set forth
regarding various optional architectures and features with
which the foregoing framework may or may not be imple-
mented, per the desires of the user. It should be strongly
noted that the following information is set forth for illus-
trative purposes and should not be construed as limiting in
any manner. Any of the following features may be optionally
incorporated with or without the exclusion of other features
described.

Parallel Processing Architecture

[0025] FIG. 2 illustrates a parallel processing unit (PPU)
200, in accordance with one embodiment. In one embodi-
ment, the PPU 200 is a multi-threaded processor that is
implemented on one or more integrated circuit devices. The
PPU 200 is a latency hiding architecture designed to process
a large number of threads in parallel. A thread (i.e., a thread
of execution) is an instantiation of a set of instructions
configured to be executed by the PPU 200. In one embodi-
ment, the PPU 200 is a graphics processing unit (GPU)
configured to implement a graphics rendering pipeline for
processing three-dimensional (3D) graphics data in order to
generate two-dimensional (2D) image data for display on a
display device such as a liquid crystal display (LCD) device.
In other embodiments, the PPU 200 may be utilized for
performing general-purpose computations. While one exem-
plary parallel processor is provided herein for illustrative
purposes, it should be strongly noted that such processor is
set forth for illustrative purposes only, and that any proces-
sor may be employed to supplement and/or substitute for the
same.

[0026] As shown in FIG. 2, the PPU 200 includes an
Input/Output (I/O) unit 205, a host interface unit 210, a front
end unit 215, a scheduler unit 220, a work distribution unit
225, a hub 230, a crossbar (Xbar) 270, one or more general

Jun. 7, 2018

processing clusters (GPCs) 250, and one or more partition
units 280. The PPU 200 may be connected to a host
processor or other peripheral devices via a system bus 202.
The PPU 200 may also be connected to a local memory
comprising a number of memory devices 204. In one
embodiment, the local memory may comprise a number of
dynamic random access memory (DRAM) devices.

[0027] The I/O unit 205 is configured to transmit and
receive communications (i.e., commands, data, etc.) from a
host processor (not shown) over the system bus 202. The I/O
unit 205 may communicate with the host processor directly
via the system bus 202 or through one or more intermediate
devices such as a memory bridge. In one embodiment, the
1/O unit 205 implements a Peripheral Component Intercon-
nect Express (PCle) interface for communications over a
PCle bus. In alternative embodiments, the I/O unit 205 may
implement other types of well-known interfaces for com-
municating with external devices.

[0028] The I/O unit 205 is coupled to a host interface unit
210 that decodes packets received via the system bus 202. In
one embodiment, the packets represent commands config-
ured to cause the PPU 200 to perform various operations.
The host interface unit 210 transmits the decoded commands
to various other units of the PPU 200 as the commands may
specify. For example, some commands may be transmitted
to the front end unit 215. Other commands may be trans-
mitted to the hub 230 or other units of the PPU 200 such as
one or more copy engines, a video encoder, a video decoder,
a power management unit, etc. (not explicitly shown). In
other words, the host interface unit 210 is configured to route
communications between and among the various logical
units of the PPU 200.

[0029] In one embodiment, a program executed by the
host processor encodes a command stream in a buffer that
provides workloads to the PPU 200 for processing. A
workload may comprise a number of instructions and data to
be processed by those instructions. The buffer is a region in
a memory that is accessible (i.e., read/write) by both the host
processor and the PPU 200. For example, the host interface
unit 210 may be configured to access the buffer in a system
memory connected to the system bus 202 via memory
requests transmitted over the system bus 202 by the I/O unit
205. In one embodiment, the host processor writes the
command stream to the buffer and then transmits a pointer
to the start of the command stream to the PPU 200. The host
interface unit 210 provides the front end unit 215 with
pointers to one or more command streams. The front end
unit 215 manages the one or more streams, reading com-
mands from the streams and forwarding commands to the
various units of the PPU 200.

[0030] The front end unit 215 is coupled to a scheduler
unit 220 that configures the various GPCs 250 to process
tasks defined by the one or more streams. The scheduler unit
220 is configured to track state information related to the
various tasks managed by the scheduler unit 220. The state
may indicate which GPC 250 a task is assigned to, whether
the task is active or inactive, a priority level associated with
the task, and so forth. The scheduler unit 220 manages the
execution of a plurality of tasks on the one or more GPCs
250.

[0031] The scheduler unit 220 is coupled to a work
distribution unit 225 that is configured to dispatch tasks for
execution on the GPCs 250. The work distribution unit 225
may track a number of scheduled tasks received from the

US 2018/0158227 Al

scheduler unit 220. In one embodiment, the work distribu-
tion unit 225 manages a pending task pool and an active task
pool for each of the GPCs 250. The pending task pool may
comprise a number of slots (e.g., 32 slots) that contain tasks
assigned to be processed by a particular GPC 250. The active
task pool may comprise a number of slots (e.g., 4 slots) for
tasks that are actively being processed by the GPCs 250. As
a GPC 250 finishes the execution of a task, that task is
evicted from the active task pool for the GPC 250 and one
of the other tasks from the pending task pool is selected and
scheduled for execution on the GPC 250. If an active task
has been idle on the GPC 250, such as while waiting for a
data dependency to be resolved, then the active task may be
evicted from the GPC 250 and returned to the pending task
pool while another task in the pending task pool is selected
and scheduled for execution on the GPC 250.

[0032] The work distribution unit 225 communicates with
the one or more GPCs 250 via XBar 270. The XBar 270 is
an interconnect network that couples many of the units of the
PPU 200 to other units of the PPU 200. For example, the
XBar 270 may be configured to couple the work distribution
unit 225 to a particular GPC 250. Although not shown
explicitly, one or more other units of the PPU 200 are
coupled to the host unit 210. The other units may also be
connected to the XBar 270 via a hub 230.

[0033] The tasks are managed by the scheduler unit 220
and dispatched to a GPC 250 by the work distribution unit
225. The GPC 250 is configured to process the task and
generate results. The results may be consumed by other tasks
within the GPC 250, routed to a different GPC 250 via the
XBar 270, or stored in the memory 204. The results can be
written to the memory 204 via the partition units 280, which
implement a memory interface for reading and writing data
to/from the memory 204. In one embodiment, the PPU 200
includes a number U of partition units 280 that is equal to the
number of separate and distinct memory devices 204
coupled to the PPU 200. A partition unit 280 will be
described in more detail below in conjunction with FIG. 3B.

[0034] In one embodiment, a host processor executes a
driver kernel that implements an application programming
interface (API) that enables one or more applications execut-
ing on the host processor to schedule operations for execu-
tion on the PPU 200. An application may generate instruc-
tions (i.e., API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 200. The driver
kernel outputs tasks to one or more streams being processed
by the PPU 200. Each task may comprise one or more
groups of related threads, referred to herein as a warp. A
thread block may refer to a plurality of groups of threads
including instructions to perform the task. Threads in the
same group of threads may exchange data through shared
memory. In one embodiment, a group of threads comprises
32 related threads.

[0035] FIG. 3A illustrates a GPC 250 of the PPU 200 of
FIG. 2, in accordance with one embodiment. As shown in
FIG. 3A, each GPC 250 includes a number of hardware units
for processing tasks. In one embodiment, each GPC 250
includes a pipeline manager 310, a pre-raster operations unit
(PROP) 315, a raster engine 325, a work distribution cross-
bar (WDX) 380, a memory management unit (MMU) 390,
and one or more Texture Processing Clusters (TPCs) 320. It
will be appreciated that the GPC 250 of FIG. 3A may include
other hardware units in lieu of or in addition to the units
shown in FIG. 3A.

Jun. 7, 2018

[0036] In one embodiment, the operation of the GPC 250
is controlled by the pipeline manager 310. The pipeline
manager 310 manages the configuration of the one or more
TPCs 320 for processing tasks allocated to the GPC 250. In
one embodiment, the pipeline manager 310 may configure at
least one of the one or more TPCs 320 to implement at least
a portion of a graphics rendering pipeline. For example, a
TPC 320 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 340. The pipeline manager 310 may also be configured
to route packets received from the work distribution unit 225
to the appropriate logical units within the GPC 250. For
example, some packets may be routed to fixed function
hardware units in the PROP 315 and/or raster engine 325
while other packets may be routed to the TPCs 320 for
processing by the primitive engine 335 or the SM 340.

[0037] The PROP unit 315 is configured to route data
generated by the raster engine 325 and the TPCs 320 to a
Raster Operations (ROP) unit in the partition unit 280,
described in more detail below. The PROP unit 315 may also
be configured to perform optimizations for color blending,
organize pixel data, perform address translations, and the
like.

[0038] The raster engine 325 includes a number of fixed
function hardware units configured to perform various raster
operations. In one embodiment, the raster engine 325
includes a setup engine, a course raster engine, a culling
engine, a clipping engine, a fine raster engine, and a tile
coalescing engine. The setup engine receives transformed
vertices and generates plane equations associated with the
geometric primitive defined by the vertices. The plane
equations are transmitted to the coarse raster engine to
generate coverage information (e.g., an X,y coverage mask
for a tile) for the primitive. The output of the coarse raster
engine may transmitted to the culling engine where frag-
ments associated with the primitive that fail a z-test are
culled, and transmitted to a clipping engine where fragments
lying outside a viewing frustum are clipped. Those frag-
ments that survive clipping and culling may be passed to a
fine raster engine to generate attributes for the pixel frag-
ments based on the plane equations generated by the setup
engine. The output of the raster engine 325 comprises
fragments to be processed, for example, by a fragment
shader implemented within a TPC 320.

[0039] Each TPC 320 included in the GPC 250 includes an
M-Pipe Controller (MPC) 330, a primitive engine 335, one
or more SMs 340, and one or more texture units 345. The
MPC 330 controls the operation of the TPC 320, routing
packets received from the pipeline manager 310 to the
appropriate units in the TPC 320. For example, packets
associated with a vertex may be routed to the primitive
engine 335, which is configured to fetch vertex attributes
associated with the vertex from the memory 204. In contrast,
packets associated with a shader program may be transmit-
ted to the SM 340.

[0040] In one embodiment, the texture units 345 are
configured to load texture maps (e.g., a 2D array of texels)
from the memory 204 and sample the texture maps to
produce sampled texture values for use in shader programs
executed by the SM 340. The texture units 345 implement
texture operations such as filtering operations using mip-
maps (i.e., texture maps of varying levels of detail). The
texture unit 345 is also used as the Load/Store path for SM

US 2018/0158227 Al

340 to MMU 390. In one embodiment, each TPC 320
includes two (2) texture units 345.

[0041] The SM 340 comprises a programmable streaming
processor that is configured to process tasks represented by
a number of threads. Each SM 340 is multi-threaded and
configured to execute a plurality of threads (e.g., 32 threads)
from a particular group of threads concurrently. In one
embodiment, the SM 340 implements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
in a group of threads (i.e., a warp) is configured to process
a different set of data based on the same set of instructions.
All threads in the group of threads execute the same instruc-
tions. In another embodiment, the SM 340 implements a
SIMT (Single-Instruction, Multiple Thread) architecture
where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions, but where individual threads in the group of
threads are allowed to diverge during execution. In other
words, when an instruction for the group of threads is
dispatched for execution, some threads in the group of
threads may be active, thereby executing the instruction,
while other threads in the group of threads may be inactive,
thereby performing a no-operation (NOP) instead of execut-
ing the instruction. The SM 340 may be described in more
detail below in conjunction with FIG. 4.

[0042] The MMU 390 provides an interface between the
GPC 250 and the partition unit 280. The MMU 390 may
provide ftranslation of virtual addresses into physical
addresses, memory protection, and arbitration of memory
requests. In one embodiment, the MMU 390 provides one or
more translation lookaside buffers (TLBs) for improving
translation of virtual addresses into physical addresses in the
memory 204.

[0043] FIG. 3B illustrates a partition unit 280 of the PPU
200 of FIG. 2, in accordance with one embodiment. As
shown in FIG. 3B, the partition unit 280 includes a Raster
Operations (ROP) unit 350, a level two (L2) cache 360, a
memory interface 370, and an L2 crossbar (XBar) 365. The
memory interface 370 is coupled to the memory 204.
Memory interface 370 may implement 16, 32, 64, 128-bit
data buses, or the like, for high-speed data transfer. In one
embodiment, the PPU 200 comprises U memory interfaces
370, one memory interface 370 per partition unit 280, where
each partition unit 280 is connected to a corresponding
memory device 204. For example, PPU 200 may be con-
nected to up to U memory devices 204, such as graphics
double-data-rate, version 5, synchronous dynamic random
access memory (GDDRS SDRAM). In one embodiment, the
memory interface 370 implements a DRAM interface and U
is equal to 8.

[0044] In one embodiment, the PPU 200 implements a
multi-level memory hierarchy. The memory 204 is located
off-chip in SDRAM coupled to the PPU 200. Data from the
memory 204 may be fetched and stored in the 1.2 cache 360,
which is located on-chip and is shared between the various
GPCs 250. As shown, each partition unit 280 includes a
portion of the .2 cache 360 associated with a corresponding
memory device 204. Lower level caches may then be
implemented in various units within the GPCs 250. For
example, each of the SMs 340 may implement a level one
(L1) cache. The L1 cache is private memory that is dedicated
to a particular SM 340. Data from the .2 cache 360 may be
fetched and stored in each of the L1 caches for processing

Jun. 7, 2018

in the functional units of the SMs 340. The .2 cache 360 is
coupled to the memory interface 370 and the XBar 270.
[0045] The ROP unit 350 includes a ROP Manager 355, a
Color ROP (CROP) unit 352, and a Z ROP (ZROP) unit 354.
The CROP unit 352 performs raster operations related to
pixel color, such as color compression, pixel blending, and
the like. The ZROP unit 354 implements depth testing in
conjunction with the raster engine 325. The ZROP unit 354
receives a depth for a sample location associated with a pixel
fragment from the culling engine of the raster engine 325.
The ZROP unit 354 tests the depth against a corresponding
depth in a depth buffer for a sample location associated with
the fragment. If the fragment passes the depth test for the
sample location, then the ZROP unit 354 updates the depth
buffer and transmits a result of the depth test to the raster
engine 325. The ROP Manager 355 controls the operation of
the ROP unit 350. It will be appreciated that the number of
partition units 280 may be different than the number of
GPCs 250 and, therefore, each ROP unit 350 may be
coupled to each of the GPCs 250. Therefore, the ROP
Manager 355 tracks packets received from the different
GPCs 250 and determines which GPC 250 that a result
generated by the ROP unit 350 is routed to. The CROP unit
352 and the ZROP unit 354 are coupled to the L2 cache 360
via an L.2 XBar 365.

[0046] FIG. 4 illustrates the streaming multi-processor
340 of FIG. 3A, in accordance with one embodiment. As
shown in FIG. 4, the SM 340 includes an instruction cache
405, one or more scheduler units 410, a register file 420, one
or more processing cores 450, one or more special function
units (SFUs) 452, one or more load/store units (LSUs) 454,
an interconnect network 480, a shared memory 470 and an
L1 cache 490.

[0047] As described above, the work distribution unit 225
dispatches tasks for execution on the GPCs 250 of the PPU
200. The tasks are allocated to a particular TPC 320 within
a GPC 250 and, if the task is associated with a shader
program, the task may be allocated to an SM 340. The
scheduler unit 410 receives the tasks from the work distri-
bution unit 225 and manages instruction scheduling for one
or more groups of threads (i.e., warps) assigned to the SM
340. The scheduler unit 410 schedules threads for execution
in groups of parallel threads, where each group is called a
warp. In one embodiment, each warp includes 32 threads.
The scheduler unit 410 may manage a plurality of different
warps, scheduling the warps for execution and then dis-
patching instructions from the plurality of different warps to
the various functional units (i.e., cores 350, SFUs 352, and
LSUs 354) during each clock cycle.

[0048] In one embodiment, each scheduler unit 410
includes one or more instruction dispatch units 415. Each
dispatch unit 415 is configured to transmit instructions to
one or more of the functional units. In the embodiment
shown in FIG. 4, the scheduler unit 410 includes two
dispatch units 415 that enable two different instructions from
the same warp to be dispatched during each clock cycle. In
alternative embodiments, each scheduler unit 410 may
include a single dispatch unit 415 or additional dispatch
units 415.

[0049] Each SM 340 includes a register file 420 that
provides a set of registers for the functional units of the SM
340. In one embodiment, the register file 420 is divided
between each of the functional units such that each func-
tional unit is allocated a dedicated portion of the register file

US 2018/0158227 Al

420. In another embodiment, the register file 420 is divided
between the different warps being executed by the SM 340.
The register file 420 provides temporary storage for oper-
ands connected to the data paths of the functional units.
[0050] Each SM 340 comprises L processing cores 450. In
one embodiment, the SM 340 includes a large number (e.g.,
128, etc.) of distinct processing cores 450. Each core 450
may include a fully-pipelined, single-precision processing
unit that includes a floating point arithmetic logic unit and an
integer arithmetic logic unit. The core 450 may also include
a double-precision processing unit including a floating point
arithmetic logic unit. In one embodiment, the floating point
arithmetic logic units implement the IEEE 754-2008 stan-
dard for floating point arithmetic. Each SM 340 also com-
prises M SFUs 452 that perform special functions (e.g.,
attribute evaluation, reciprocal square root, and the like), and
NLSUs 454 that implement load and store operations
between the shared memory 470 or [.1 cache 490 and the
register file 420. In one embodiment, the SM 340 includes
128 cores 450, 32 SFUs 452, and 32 LSUs 454.

[0051] Each SM 340 includes an interconnect network 480
that connects each of the functional units to the register file
420 and the L.SU 454 to the register file 420, shared memory
470 and L1 cache 490. In one embodiment, the interconnect
network 480 is a crossbar that can be configured to connect
any of the functional units to any of the registers in the
register file 420 and connect the LSUs 454 to the register file
and memory locations in shared memory 470 and L1 cache
490.

[0052] The shared memory 470 is an array of on-chip
memory that allows for data storage and communication
between the SM 340 and the primitive engine 335 and
between threads in the SM 340. In one embodiment, the
shared memory 470 comprises 64 KB of storage capacity.
An L1 cache 490 is in the path from the SM 340 to the
partition unit 280. The [.1 cache 490 can be used to cache
reads and writes. In one embodiment, the L1 cache 490
comprises 24 KB of storage capacity.

[0053] The PPU 200 described above may be configured
to perform highly parallel computations much faster than
conventional CPUs. Parallel computing has advantages in
graphics processing, data compression, biometrics, stream
processing algorithms, and the like.

[0054] When configured for general purpose parallel com-
putation, a simpler configuration can be used. In this model,
as shown in FIG. 2, fixed function graphics processing units
are bypassed, creating a much simpler programming model.
In this configuration, the Work Distribution Unit 225 assigns
and distributes blocks of threads directly to the TPCs 320.
The threads in a block execute the same program, using a
unique thread ID in the calculation to ensure each thread
generates unique results, using the SM 340 to execute the
program and perform calculations, shared memory 470
communicate between threads, and the LSU 454 to read and
write Global memory through partition [.1 cache 490 and
partition unit 280.

[0055] When configured for general purpose parallel com-
putation, the SM 340 can also write commands that sched-
uler unit 220 can use to launch new work on the TPCs 320.
[0056] In one embodiment, the PPU 200 comprises a
graphics processing unit (GPU). The PPU 200 is configured
to receive commands that specify shader programs for
processing graphics data. Graphics data may be defined as a
set of primitives such as points, lines, triangles, quads,

Jun. 7, 2018

triangle strips, and the like. Typically, a primitive includes
data that specifies a number of vertices for the primitive
(e.g., in a model-space coordinate system) as well as attri-
butes associated with each vertex of the primitive. The PPU
200 can be configured to process the graphics primitives to
generate a frame buffer (i.e., pixel data for each of the pixels
of the display).

[0057] An application writes model data for a scene (i.e.,
a collection of vertices and attributes) to a memory such as
a system memory or memory 204. The model data defines
each of the objects that may be visible on a display. The
application then makes an API call to the driver kernel that
requests the model data to be rendered and displayed. The
driver kernel reads the model data and writes commands to
the one or more streams to perform operations to process the
model data. The commands may reference different shader
programs to be implemented on the SMs 340 of the PPU 200
including one or more of a vertex shader, hull shader,
domain shader, geometry shader, and a pixel shader. For
example, one or more of the SMs 340 may be configured to
execute a vertex shader program that processes a number of
vertices defined by the model data. In one embodiment, the
different SMs 340 may be configured to execute different
shader programs concurrently. For example, a first subset of
SMs 340 may be configured to execute a vertex shader
program while a second subset of SMs 340 may be config-
ured to execute a pixel shader program. The first subset of
SMs 340 processes vertex data to produce processed vertex
data and writes the processed vertex data to the L2 cache 360
and/or the memory 204. After the processed vertex data is
rasterized (i.e., transformed from three-dimensional data
into two-dimensional data in screen space) to produce
fragment data, the second subset of SMs 340 executes a
pixel shader to produce processed fragment data, which is
then blended with other processed fragment data and written
to the frame buffer in memory 204. The vertex shader
program and pixel shader program may execute concur-
rently, processing different data from the same scene in a
pipelined fashion until all of the model data for the scene has
been rendered to the frame buffer. Then, the contents of the
frame buffer are transmitted to a display controller for
display on a display device.

[0058] The PPU 200 may be included in a desktop com-
puter, a laptop computer, a tablet computer, a smart-phone
(e.g., awireless, hand-held device), personal digital assistant
(PDA), a digital camera, a hand-held electronic device, and
the like. In one embodiment, the PPU 200 is embodied on a
single semiconductor substrate. In another embodiment, the
PPU 200 is included in a system-on-a-chip (SoC) along with
one or more other logic units such as a reduced instruction
set computer (RISC) CPU, a memory management unit
(MMU), a digital-to-analog converter (DAC), and the like.
[0059] In one embodiment, the PPU 200 may be included
on a graphics card that includes one or more memory
devices 204 such as GDDRS SDRAM. The graphics card
may be configured to interface with a PCle slot on a
motherboard of a desktop computer that includes, e.g., a
northbridge chipset and a southbridge chipset. In yet another
embodiment, the PPU 200 may be an integrated graphics
processing unit (iGPU) included in the chipset (i.e., North-
bridge) of the motherboard.

[0060] FIG. 5 illustrates a System-on-Chip (SoC) 500
including the PPU 200 of FIG. 2, in accordance with one
embodiment. As shown in FIG. 5, the SoC 500 includes a

US 2018/0158227 Al

CPU 550 and a PPU 200, as described above. The SoC 500
may also include a system bus 202 to enable communication
between the various components of the SoC 500. Memory
requests generated by the CPU 550 and the PPU 200 may be
routed through a system MMU 590 that is shared by multiple
components of the SoC 500. The SoC 500 may also include
a memory interface 595 that is coupled to one or more
memory devices 204. The memory interface 595 may imple-
ment, e.g., a DRAM interface.

[0061] Although not shown explicitly, the SoC 500 may
include other components in addition to the components
shown in FIG. 5. For example, the SoC 500 may include
multiple PPUs 200 (e.g., four PPUs 200), a video encoder/
decoder, and a wireless broadband transceiver as well as
other components. In one embodiment, the SoC 500 may be
included with the memory 204 in a package-on-package
(PoP) configuration.

[0062] FIG. 6 is a conceptual diagram of a graphics
processing pipeline 600 implemented by the PPU 200 of
FIG. 2, in accordance with one embodiment. The graphics
processing pipeline 600 is an abstract flow diagram of the
processing steps implemented to generate 2D computer-
generated images from 3D geometry data. As is well-known,
pipeline architectures may perform long latency operations
more efficiently by splitting up the operation into a plurality
of stages, where the output of each stage is coupled to the
input of the next successive stage. Thus, the graphics pro-
cessing pipeline 600 receives input data 601 that is trans-
mitted from one stage to the next stage of the graphics
processing pipeline 600 to generate output data 602. In one
embodiment, the graphics processing pipeline 600 may
represent a graphics processing pipeline defined by the
OpenGL® API. As an option, the graphics processing pipe-
line 600 may be implemented in the context of the func-
tionality and architecture of the previous Figures and/or any
subsequent Figure(s).

[0063] As shown in FIG. 6, the graphics processing pipe-
line 600 comprises a pipeline architecture that includes a
number of stages. The stages include, but are not limited to,
a data assembly stage 610, a vertex shading stage 620, a
primitive assembly stage 630, a geometry shading stage 640,
a viewport scale, cull, and clip (VSCC) stage 650, a raster-
ization stage 660, a fragment shading stage 670, and a raster
operations stage 680. In one embodiment, the input data 601
comprises commands that configure the processing units to
implement the stages of the graphics processing pipeline 600
and geometric primitives (e.g., points, lines, triangles,
quads, triangle strips or fans, etc.) to be processed by the
stages. The output data 602 may comprise pixel data (i.e.,
color data) that is copied into a frame buffer or other type of
surface data structure in a memory.

[0064] The data assembly stage 610 receives the input data
601 that specifies vertex data for high-order surfaces, primi-
tives, or the like. The data assembly stage 610 collects the
vertex data in a temporary storage or queue, such as by
receiving a command from the host processor that includes
a pointer to a buffer in memory and reading the vertex data
from the buffer. The vertex data is then transmitted to the
vertex shading stage 620 for processing.

[0065] The vertex shading stage 620 processes vertex data
by performing a set of operations (i.e., a vertex shader or a
program) once for each of the vertices. Vertices may be, e.g.,
specified as a 4-coordinate vector (i.e., <X, y, Z, W>) asso-
ciated with one or more vertex attributes (e.g., color, texture

Jun. 7, 2018

coordinates, surface normal, etc.). The vertex shading stage
620 may manipulate individual vertex attributes such as
position, color, texture coordinates, and the like. In other
words, the vertex shading stage 620 performs operations on
the vertex coordinates or other vertex attributes associated
with a vertex. Such operations commonly including lighting
operations (i.e., modifying color attributes for a vertex) and
transformation operations (i.e., modifying the coordinate
space for a vertex). For example, vertices may be specified
using coordinates in an object-coordinate space, which are
transformed by multiplying the coordinates by a matrix that
translates the coordinates from the object-coordinate space
into a world space or a normalized-device-coordinate (NCD)
space. The vertex shading stage 620 generates transformed
vertex data that is transmitted to the primitive assembly
stage 630.

[0066] The primitive assembly stage 630 collects vertices
output by the vertex shading stage 620 and groups the
vertices into geometric primitives for processing by the
geometry shading stage 640. For example, the primitive
assembly stage 630 may be configured to group every three
consecutive vertices as a geometric primitive (i.e., a triangle)
for transmission to the geometry shading stage 640. In some
embodiments, specific vertices may be reused for consecu-
tive geometric primitives (e.g., two consecutive triangles in
a triangle strip may share two vertices). The primitive
assembly stage 630 transmits geometric primitives (i.e., a
collection of associated vertices) to the geometry shading
stage 640.

[0067] The geometry shading stage 640 processes geo-
metric primitives by performing a set of operations (i.e., a
geometry shader or program) on the geometric primitives.
Tessellation operations may generate one or more geometric
primitives from each geometric primitive. In other words,
the geometry shading stage 640 may subdivide each geo-
metric primitive into a finer mesh of two or more geometric
primitives for processing by the rest of the graphics pro-
cessing pipeline 600. The geometry shading stage 640
transmits geometric primitives to the viewport SCC stage
650.

[0068] In one embodiment, the graphics processing pipe-
line 600 may operate within a streaming multiprocessor and
the vertex shading stage 620, the primitive assembly stage
630, the geometry shading stage 640, the fragment shading
stage 670, and/or hardware/software associated therewith,
may sequentially perform processing operations. Once the
sequential processing operations are complete, in one
embodiment, the viewport SCC stage 650 may utilize the
data. In one embodiment, primitive data processed by one or
more of the stages in the graphics processing pipeline 600
may be written to a cache (e.g. L1 cache, a vertex cache,
etc.). In this case, in one embodiment, the viewport SCC
stage 650 may access the data in the cache. In one embodi-
ment, the viewport SCC stage 650 and the rasterization stage
660 arc implemented as fixed function circuitry.

[0069] The viewport SCC stage 650 performs viewport
scaling, culling, and clipping of the geometric primitives.
Each surface being rendered to is associated with an abstract
camera position. The camera position represents a location
of a viewer looking at the scene and defines a viewing
frustum that encloses the objects of the scene. The viewing
frustum may include a viewing plane, a rear plane, and four
clipping planes. Any geometric primitive entirely outside of
the viewing frustum may be culled (i.e., discarded) because

US 2018/0158227 Al

the geometric primitive will not contribute to the final
rendered scene. Any geometric primitive that is partially
inside the viewing frustum and partially outside the viewing
frustum may be clipped (i.e., transformed into a new geo-
metric primitive that is enclosed within the viewing frustum.
Furthermore, geometric primitives may each be scaled based
on a depth of the viewing frustum. All potentially visible
geometric primitives are then transmitted to the rasterization
stage 660.

[0070] The rasterization stage 660 converts the 3D geo-
metric primitives into 2D fragments (e.g. capable of being
utilized for display, etc.). The rasterization stage 660 may be
configured to utilize the vertices of the geometric primitives
to setup a set of plane equations from which various attri-
butes can be interpolated. The rasterization stage 660 may
also compute a coverage mask for a plurality of pixels that
indicates whether one or more sample locations for the pixel
intercept the geometric primitive. In one embodiment,
z-testing may also be performed to determine if the geo-
metric primitive is occluded by other geometric primitives
that have already been rasterized. The rasterization stage 660
generates fragment data (i.e., interpolated vertex attributes
associated with a particular sample location for each covered
pixel) that are transmitted to the fragment shading stage 670.

[0071] The fragment shading stage 670 processes frag-
ment data by performing a set of operations (i.e., a fragment
shader or a program) on each of the fragments. The fragment
shading stage 670 may generate pixel data (i.e., color values)
for the fragment such as by performing lighting operations
or sampling texture maps using interpolated texture coordi-
nates for the fragment. The fragment shading stage 670
generates pixel data that is transmitted to the raster opera-
tions stage 680.

[0072] In one embodiment, the fragment shading stage
670 may sample a texture map using the texture unit(s) 345
of PPU 200. Texture data 603 may be read from the memory
204 and sampled using the texture unit 345 hardware. The
texture unit 345 may return a sampled value to the fragment
shading stage 670 to be processed by the fragment shader.

[0073] The raster operations stage 680 may perform vari-
ous operations on the pixel data such as performing alpha
tests, stencil tests, and blending the pixel data with other
pixel data corresponding to other fragments associated with
the pixel. When the raster operations stage 680 has finished
processing the pixel data (i.e., the output data 602), the pixel
data may be written to a render target such as a frame buffer,
a color buffer, or the like.

[0074] It will be appreciated that one or more additional
stages may be included in the graphics processing pipeline
600 in addition to or in lieu of one or more of the stages
described above. Various implementations of the abstract
graphics processing pipeline may implement different
stages. Furthermore, one or more of the stages described
above may be excluded from the graphics processing pipe-
line in some embodiments (such as the geometry shading
stage 640). Other types of graphics processing pipelines are
contemplated as being within the scope of the present
disclosure. Furthermore, any of the stages of the graphics
processing pipeline 600 may be implemented by one or
more dedicated hardware units within a graphics processor
such as PPU 200. Other stages of the graphics processing
pipeline 600 may be implemented by programmable hard-
ware units such as the SM 340 of the PPU 200.

Jun. 7, 2018

[0075] The graphics processing pipeline 600 may be
implemented via an application executed by a host proces-
sor, such as a CPU 550. In one embodiment, a device driver
may implement an application programming interface (API)
that defines various functions that can be utilized by an
application in order to generate graphical data for display.
The device driver is a software program that includes a
plurality of instructions that control the operation of the PPU
200. The API provides an abstraction for a programmer that
lets a programmer utilize specialized graphics hardware,
such as the PPU 200, to generate the graphical data without
requiring the programmer to utilize the specific instruction
set for the PPU 200. The application may include an API call
that is routed to the device driver for the PPU 200. The
device driver interprets the API call and performs various
operations to respond to the API call. In some instances, the
device driver may perform operations by executing instruc-
tions on the CPU 550. In other instances, the device driver
may perform operations, at least in part, by launching
operations on the PPU 200 utilizing an input/output interface
between the CPU 550 and the PPU 200. In one embodiment,
the device driver is configured to implement the graphics
processing pipeline 600 utilizing the hardware of the PPU
200.

[0076] Various programs may be executed within the PPU
200 in order to implement the various stages of the graphics
processing pipeline 600. For example, the device driver may
launch a kernel on the PPU 200 to perform the vertex
shading stage 620 on one SM 340 (or multiple SMs 340).
The device driver (or the initial kernel executed by the PPU
200) may also launch other kernels on the PPU 200 to
perform other stages of the graphics processing pipeline
600, such as the geometry shading stage 640 and the
fragment shading stage 670. In addition, some of the stages
of'the graphics processing pipeline 600 may be implemented
on fixed unit hardware such as a rasterizer or a data
assembler implemented within the PPU 200. It will be
appreciated that results from one kernel may be processed
by one or more intervening fixed function hardware units
before being processed by a subsequent kernel on an SM
340.

Infinite Resolution Textures

[0077] FIG. 7 is a conceptual illustration of a pinching
operation associated with a pinchmap, in accordance with
the prior art. Pinchmaps were proposed as a technique to
improve the results of bilinear interpolation of texel values
around discontinuities (i.e., edges) in the texture data. Pinch-
maps are disclosed in detail by Tarini et al., “Pinchmaps:
textures with customizable discontinuities”, Comput. Graph.
Forum 24, 3 (2005), which is incorporated by reference
herein in its entirety. A pinchmap is essentially a pair of
textures. A first texture stores texels (i.e., sample color
values of a raster image) at particular sample locations
defined in a texture coordinate space (i.e., uv space). An
auxiliary texture stores parameters corresponding to each
texel that define a pinching operation in the texture coordi-
nate space.

[0078] As shown in FIG. 7, a texture map 700 includes a
number of texels 710 defined at different u,v coordinates,
usually specified in a 2D grid. Taking a sample value at a
particular sample location X is typically performed by fetch-
ing the texel values at the four corners of the region (i.e., all
points between a set of four corresponding texels) that

US 2018/0158227 Al

includes sample location x and performing a bilinear inter-
polation of the four texel values. However, when sample
location x is located proximate to discontinuities (i.e., edges
or silhouettes) in the raster image, the results of this inter-
polation can produce inaccurate values.

[0079] The texture coordinate space can be segmented into
regions between each of the texels, each region having a
texel located at the four corners of the region. Some regions,
such as regions 711, 712, and 713, may include texels having
texel values approximately similar to a first color, and other
regions, such as regions 717, 718, and 719 may include
texels having texel values approximately similar to a second
color. However, some regions may include texels associated
with two or more objects of different colors, such as regions
714, 715, and 716. Regions 714, 715, and 716 have two
texels associated with the color of a first object and two
texels associated with the color of a second object. For such
texels, bilinear interpolation can produce artifacts.

[0080] Pinchmaps provide a solution by mapping a sample
location proximate such discontinuities to a new sample
location using the parameters in the auxiliary texture map to
avoid these inaccurate interpolation results. The parameters
determine a mapping that shifts the sample location X to a
different region away from the discontinuity. For example,
the sample location x, which would normally fall in region
715 of the texture map 700 is mapped to a location in region
712, effectively eliminating regions 714, 715, and 716 from
being sampled.

[0081] Pinchmaps effectively change how a texture map is
sampled near edges in the texture map. However, the solu-
tion provided by the pinchmap is limited in effectiveness
because each region can only encode a single quadratic
curve within a region between four pinchmap texels and the
magnitude of the texture coordinate adjustment is restricted
by a pinchmap texel size. Sample locations on one side of
the curve are shifted in one direction and sample locations
on the other side of the curve are shifted in another direction.
This is a problem when the discontinuities within a region
cannot be defined by a single curve. For example, a region
may overlap edges corresponding with the intersection of
two or more objects within an image. In the worst case
example, a first texel associated with a region may corre-
spond to a first color of a first object, a second texel
associated with the region may correspond to a second color
of a second object, a third texel associated with the region
may correspond to a third color of a third object, and a fourth
texel associated with the region may correspond to a fourth
color of a fourth object.

[0082] Infinite resolution textures expand on pinchmaps
by encoding curve segments identified in a raster image and
per pixel indices into the list of curve segments that map
texture coordinates to a list of curves that influence samples
within a region. Each curve segment is associated with a
truncated Voronoi cell that refers to a region of all u,v
coordinates closer to the curve segment than any other curve
segment. Such cells are not restricted in size, a priori,
providing a greater flexibility and more accurate results
when compared to pinchmaps.

[0083] FIG. 8 illustrates a raster image 800, in accordance
with one embodiment. The raster image 800 comprises a
two-dimensional array of pixels, each pixel assigned a color
value in a color space, such as the RGB color space. The
image 800 can be analyzed by an edge detection algorithm
to generate a list of curves or curve segments that define

Jun. 7, 2018

edges, silhouettes, or discontinuities within the raster image
800. Looking closely at a blown-up view of region 810, the
pixels in this region include four different colors and five
curve segments 820 that separate these colors.

[0084] An infinite resolution texture acceleration data
structure may be generated based on either a raster image or
a vector image. When the infinite resolution texture is based
on a raster image, such as image 800, an edge detection
algorithm is utilized to generate the list of curve segments
associated with the raster image. In one embodiment, the
edge detection algorithm is implemented as a modified
version of the Canny edge detector, developed by John
Canny in 1986. First, gradients for each pixel are calculated
by computing the 3x2 Jacobian J of the partial derivatives
along the x and y directions for each RGB component of the
raster image and then finding the largest eigenvalue of 2x2
matrix J7J. The square root of the eigenvalue gives the edge
strength and the corresponding eigenvector is the gradient
normal. Computing the partial derivatives for each pixel of
the raster image may be performed using the Scharr operator
due to its improved rotational symmetry. An edge thinning
step (i.e., non-maximum suppression step) is implemented
by invalidating all pixels for which the edge strength (de-
fined as the square root of the eigenvalue) is less than either
of the two edge strength values for pixels sampled in the
positive or negative gradient direction. Once the non-maxi-
mum suppression step has been completed, a set of edge
pixels in the raster image has been identified.

[0085] Each edge pixel may define a point on a corre-
sponding curve segment. In one embodiment, the center of
the edge pixel is used as a point on the curve segment. In
another embodiment, the point on the curve segment defined
for an edge pixel can be tuned by fitting a parabola to the
three edge strength values that were used for the non-
maximum suppression step. A sub-pixel position can be
calculated for each edge pixel having an edge strength that
is a local maximum. In other words, even if a pixel is
associated with an edge strength that is a local maximum
among the three pixels along the gradient direction, the
actual position of the point on the curve segment may be
offset from the center of the pixel, and the position of the
edge can be more accurately estimated by fitting the three
strength values to a parabolic curve and finding the point
along the gradient direction between pixels that corresponds
with a maximum of the parabolic curve. This location will
be offset from the center of the pixel along the gradient
direction by less than the distance between the sampled
pixels.

[0086] Once all of the pixels having an edge strength that
is a local maximum have been identified, the next step in the
edge detection algorithm is identifying which pixels are
connected along a particular edge. An image can have many
edges included in the image, so the algorithm must group the
pixels for each edge together into subgroups associated with
each edge. In one embodiment, a parallel algorithm is
utilized to facilitate the grouping of edge pixels. For each
edge pixel, a tangent vector of the edge is defined as an
orthogonal vector to the gradient direction. A goal of the
algorithm for connecting edge pixels is to determine two
neighbors for each edge pixel in such a way that a vector
from the edge pixel to the neighboring pixel does not vary
too wildly from the tangent vector.

[0087] FIG. 9A illustrates a connection step in an edge
detection algorithm, in accordance with one embodiment. As

US 2018/0158227 Al

shown in FIG. 9A, four edge pixels, pg, p;, P2, and p;, have
been identified by computing the gradients for each pixel
and invalidating all pixels that are not associated with a
local-maximum edge strength, as discussed above. Once the
set of edge pixels is identified, these pixels need to be
connected in some manner to define one or more edges in the
raster image. For each edge pixel identified in the raster
image, a set of neighboring pixels may be identified and a
metric value m is calculated for each neighboring pixel in
the set of neighboring pixels. The neighboring pixel asso-
ciated with the maximum value of m is identified as a
potential candidate pixel. The metric m may be calculated as
follows:

_ (coon +leosnal) — (Eq. 1

llp2 = pull

where y, and y, are angles between the vector connecting
the edge pixel, p,, and a neighboring pixel, p,, and the
expected tangent vector at the edge pixel, e,, and expected
tangent vector at the neighboring pixel, e,, respectively; and
s, 1s the edge strength of the neighboring pixel, p,. The best
candidate is the neighboring pixel which is closest to the
edge pixel in a direction along the expected tangent of the
edge pixel that also has the largest edge strength. Applying
Equation 1 to each of a subset of neighboring pixels will
yield a candidate pixel associated with a positive tangent
vector e, of the edge pixel. The same process can be repeated
to yield a second candidate pixel associated with a negative
tangent vector (i.e., —e,) of the edge pixel.

[0088] As shown in FIG. 9A, a set of four edge pixels 900
are identified by analyzing the gradients within the raster
image. Hach of the four edge pixels 900 may then be
processed to identify two candidate pixels within a local
neighborhood that would be the best candidates to be
included in a set of points of a particular edge in the image.
For a given edge pixel, such as edge pixel p,, a metric value
m is calculated for each of the neighboring pixels to edge
pixel p,. In other words, a metric value m, is calculated for
neighboring pixel p,, a metric value m, is calculated for
neighboring pixel p,, and a metric value mj; is calculated for
neighboring pixel p;. It may be determined that metric value
m, is a maximum metric value for all the neighboring pixels,
making pixel p, a candidate pixel to include within an edge
defined by pixels p, and p,. It may also be determined that
metric value m, is a maximum metric value for all the
neighboring pixels when using the negative tangent vector
—e,. Thus, two candidate pixels may be identified using both
the tangent vector and negative tangent vector to calculate
metric values for each neighboring pixel.

[0089] In parallel, the same procedure can be performed
for each of the other edge pixels p,, p,, and p;. The
candidate pixels are then compared to determine if any two
edge pixels should be connected. If pixel p, is a candidate
pixel for pixel p, and pixel p, is a candidate pixel for pixel
p., then the two edge pixels are connected. The edge
sequences of candidate pixels may be identified by connect-
ing chains of candidate pixels. For example, pixel p, may be
connected to pixel p,, and pixel p, may be connected to pixel
p, to form a chain of three pixels that define an edge
sequence. Pixel p; may not be included in the chain if pixel
P> was not identified as a candidate pixel for pixel p,, in
which case pixel p; may be included in a different edge

Jun. 7, 2018

sequence with zero or more other edge pixels. In one
embodiment, edge sequences are required to have at least
two edge pixels included in the sequence. If any edge pixels
are not connected to any other edge pixels, then those edge
pixels may be discarded.

[0090] Inone embodiment, once the edge pixels have been
connected to identify a number of edge sequences, edge
sequences having a mean edge strength below a threshold
value, 0, can be eliminated. In other words, for each edge
sequence, a mean edge strength of all of the edge pixels
included in the edge sequence is calculated and compared
against the threshold value. All edge sequences having a
mean edge strength below the threshold value are discarded.
The threshold value may be adjusted to discard weak edges.
Adjustments may be made manually to achieve a desired
result in image quality, or automatically to attempt to
identify a particular threshold number of edges in an image.
In one embodiment, the threshold value can be adjusted
automatically between a minimum value and maximum
value until the number of edge pixels included in acceptable
edge sequences is proximate to a target percentage of the
total number of pixels in the raster image.

[0091] FIG. 9B illustrates a continuous curve 950 fit to a
sequence of edge pixels, in accordance with one embodi-
ment. The goal of identifying edges in the raster image is to
adjust sampling coordinates in areas proximate to the edges
thereby avoiding interpolation of samples on both sides of
the edge. Similar to pinchmaps, one technique for avoiding
sampling the raster image in areas proximate to the edge is
to adjust the sample location and move the sample location
away from the edge, as will be discussed in more detail
below. In order to determine an adjustment to the sample
location, a direction and magnitude of an adjustment vector
needs to be calculated, where the adjustment vector is based
on a distance of the sample location to the curve. Thus,
continuous curves that pass through the edge pixels in the
sequences of edge pixels must be defined and stored along
with the raster image. The manner in which curves are
encoded may be selected in order to simplify calculations for
determining the adjustment vector during texture operations
using the infinite resolution texture. In one embodiment,
each curve segment is represented as a cubic Bezier curve.
[0092] As shown in FIG. 9B, a cubic Bezier curve passing
through two points, such as two adjacent edge pixels in an
edge sequence, may be defined by a set of four control
points: qo, q;, 9., and q;. A first control point q, indicates a
start of the curve segment at edge pixel p,, and a fourth
control point q; indicates an end of the curve segment at
edge pixel p,. A second control point q, is located along a
tangent vector to the curve segment that passes through the
first control point q,, and a third control point q, is located
along a tangent vector to the curve segment that passes
through the fourth control point q,. A point p, is located at
the intersection of the two tangent vectors. The location of
control points q;, and q, may be selected by choosing
locations on the tangent vectors that, when projected on the
vector from p, to p,, uniformly trisect the vector from p, to
Pa.

[0093] Based on a technique described in Floater, “Ratio-
nal cubic implicitization,” Mathematical Methods for
Curves and Surfaces, pp. 151-159 (1995), which is hereby
incorporated by reference herein in its entirety, a distance of
a sample location x to the Bezier curve defined by the four
control points can be approximated by solving the following

US 2018/0158227 Al

equations that define an implicit representation of the curve
by six coefflicients and a formula for approximating a dis-
tance of any point to the curve within the triangle pyp,p.:

g,=(1-h)pothipy (Eq. 2)
g=(1-ha)pothop, (Eq. 3)
a=3(1-%): i=1,2 (Eq. 4)
B=3n: i={1,2} (Eq. 5)
DO ~p~ou My i={1,2}; k={1,2} (Eq. 6)
A=—p 2D, (Eq. 7)
B=-p D, (Eq. 8)
C==3BB+2B 1% +2B5°0— B Boct 0 (Eq. 9)
D=0, (Eq. 10)
E=a,®, (Eq. 11)
F=1-a,0, (Eq. 12)

T,y AT A BT G2+ Cr T T+ DT 24+ ET 2T+ P13 (Eq. 13)

It will be appreciated that A, and A, are parameters that
identify where between p, and p; and p, and p,, respectively,
the second and third control points lie. Furthermore, the
terms T,, T, and T, are the barycentric coordinates of point
{x, y} in the triangle p,p,p, where to+T; +t,=1. The function
f in Equation 13 is an implicit representation of the Bezier
curve because f=0 on the curve.

[0094] Floater proves that f in Equation 13 is unique
inside the Bezier triangle pyp,p, iff ®,P,>0. However, in
order to use f for all texels within the greater Voronoi region
960 associated with the curve segment between p, and p,,
coeflicients A-F can be scaled to approximate the distance to
the curve for sample location x anywhere within the Voronoi
region 960. Scaling the coefficients can be achieved by
noticing that the implicit equation f(x, y)=0 remains correct
if the function is multiplied by any non-zero value s.
Accordingly, a constant scaling factor s is chosen such that
sf(x, y) yields the best approximation to the distances to the
curve within the Voronoi region 960. Another possibility to
approximate the distance to the curve is to use f/IVfl (i.e.,
use non-constant scaling factor s=1/IV||l). This would result
in a better approximation, but would be more expensive to
compute.

[0095] It must be noted that this solution is only an
approximation of a true distance to the curve, but analysis of
the error of such approximation shows that the error is less
than 10% everywhere in the Voronoi region as long as the
acute angles Zp;pop, and Zp,p,p, are smaller than 0.1
radians (=34°) and the length of the edges (1=2h) of the
Voronoi region 960 is less than 2||q,—qs||- In order to avoid
instances where the approximation error becomes too large,
any curve segments where the acute angles Zp,pop, and
2p,pspo would be too large (i.e., 235) is approximated as a
straight curve segment.

[0096] Each straight curve segment can be treated as a
cubic Bezier curve with q; and q, lying on [q,, q5], in order
to minimize code divergence when calculating distance to
the curve segments. This would result in infinite barycentric
coordinates for a point {x, y} in the Voronoi region, and
would result in a division by zero error when solving for the

Jun. 7, 2018

coeflicients of function f. The error can be avoided by
simply dropping the normalization requirement (T,+T,+
1,=1) and directly including the distance scaling into the six
coefficients A-F to arrive at a very simple solution of
computing the barycentric coordinates using two dot prod-
ucts with the edges of the Bezier triangle.

[0097] Again, a signed distance to the curve for any point
{x, y} can be approximated by using a function f in
Equation 13, which yields a scalar value that is positive on
one side of the curve segment and negative on the other side
of the curve segment. In order to find an adjustment vector
to move a sample location x, the scalar value of function f
in Equation 13 is multiplied by the normal vector, n,, to the
curve associated with the sample location x. The normal
vector n; may be found by interpolating between the normal
vectors at points p, and p,. The interpolation may be
performed by using the signed distances from point {x,y} to
the edges of the curve’s Voronoi region d, and d, to find the
ratio of:

o = llol| (Eq. 14)
" lldoll + sl

which yields an interpolation parameter p,, such that:

n=(1=p,)g+p, i3 (Eq. 15)

[0098] A cubic polynomial curve is a bad choice for
approximating a linear distance far off the curve. In another
embodiment, a solution to determining a distance to a curve
uses rational curves instead of cubic Bezier curves. Let a
distance d,, be a distance from the sample location x to the
line from control point q, to control point q; along the
interpolated normal n,. The normal n, can be computed using
weights T, and T5:

lloll (Eq. 16)
0=
lldoll + lld3]|

_ sl (Bq. 17)
SR il
lldoll + lld3]|

Without loss of generality, the function f that gives an
approximation of distance to the curve can be represented
as:

Fey)=d,+g(dod,ds)iots

In one embodiment, the function g that satisfies the bound-
ary conditions is given by:

(Eq. 18)

g(do d,,d3)=asdytacds (Eq. 19)

where aj=tan(0,) and a;=tan(-8;), and where 6,=2p,pyp-
and 0;=/p,p,po- Furthermore, the approximation property
of function f can be improved by adding a quadratic term to
function f as such:

Fxyy=d, Hasdoraods)iorsc(do+ds)iors) (Eq. 20)

where c is a constant that can be used to fit the given points
between q, and q5. A solution for ¢ can be found by
performing a linear regression that minimizes curve devia-
tion from a given set of points {x,, y,;}.

[0099] No matter which function f is utilized to encode an
implicit representation of a curve segment, an acceleration
structure for the infinite resolution texture is stored that

US 2018/0158227 Al

includes a first data structure for encoding the color samples
for each pixel of a raster image and a second data structure
that associates each pixel of the raster image with one or
more curve segments that influence the pixel. In one
embodiment, the first data structure stores a number of color
component values for each pixel of the raster image. The
first data structure is a two-dimensional array of pixel
values, each pixel values being one or more components. In
one embodiment, the pixel values may be encoded as a
single grayscale value. In other embodiments, the pixel
values may be encoded as multiple color components; e.g.,
RGB, RGBA, YCrCb, CMYK, and so forth. The first data
structure may be stored as a two-dimensional array, with
each entry of the array storing multiple values corresponding
to the multiple color components, or as a set of two-
dimensional arrays, each array storing values for a particular
color component.

[0100] The second data structure may also be a two-
dimensional array, with each entry of the array correspond-
ing to a pixel of the raster image that is used as the texture
map 1002. The second data structure is populated with
indices into a list of curve segments associated with the
raster image. For each pixel in the raster image that is
influenced by a curve segment, an index for a first entry in
the list of curve segments is stored in the corresponding
entry in the second data structure. The list of curve segments
includes a number of entries, each entry corresponding to a
pixel influenced by at least one curve segment. Each entry
may encode the parameters for implicitly describing one or
more curve segments that influence the corresponding pixel
of the raster image.

[0101] For example, a first entry in the list may encode a
single curve segment that influences a first pixel in the raster
image. In one embodiment, the entry encodes the six coef-
ficients, A-F, to the implicit representation of the curve
segment. The entry may also encode control points and/or
normal vectors associated with the curve segment, such as:
control points qg, q;, q,, and q;; normal n,, and n; or p,, p;,
and p,. From these parameters, a distance to the curve
segment from any sample location x within the Voronoi
region can be calculated based on Equation 13. In another
embodiment, the entry encodes the constant ¢ along with the
control points and/or normal vectors associated with the
rational curve segment defined in Equation 20. From these
parameters, a distance to the curve segment from any sample
location x within the Voronoi region can be calculated based
on Equation 20.

[0102] A second entry in the list may encode a plurality of
curve segments that influence a second pixel in the raster
image. It will be appreciated that more than one curve
segment may influence a particular pixel in the image
because the area of influence is defined by the corresponding
Voronoi region. This can also happen where edges intersect.
The parameters for each curve segment are encoded sequen-
tially in the entry of the list. Whether the entry includes one
curve segment or a plurality of curve segments, the first
parameter for the next curve segment in the entry may be set
to a void value (e.g., binary Ox{fff) to indicate that the entry
contains no more curve segments associated with that pixel
of the raster image. When reading the parameter of the next
curve segment from the list, an algorithm can check for the
void value to determine whether there is another valid curve
segment encoded within the entry of the list. Again, the
second data structure may comprise a 2D array that stores an

11

Jun. 7, 2018

index into the list for the start of each entry corresponding
to the pixel associated with that index of the 2D array.
Parameters for a particular curve segment may be stored in
the list in multiple entries when those curve segments
influence more than one pixel in the raster image. Even
though it is not efficient to store the parameters for a single
curve segment in multiple entries, such storage reduces a
level of indirection when accessing the parameters by not
having to access a different location that stores the param-
eters for a curve segment pointed to by multiple entries. In
alternative embodiments, each entry in the list may merely
include pointers to the locations of parameters for each
curve segment influenced by the pixel. While this minimizes
the storage required for parameters of edge segments, it adds
an additional layer of indirection to read such parameters
based on the sample location.

[0103] The above discussion has been applicable to a
technique for preprocessing a raster image to generate an
infinite resolution texture acceleration data structure based
on a raster image. Alternatively, the infinite resolution
texture acceleration data structure may be generated based
on a vector-based image. In one embodiment, the infinite
resolution texture acceleration data structure may be gener-
ated based on a vector image by rendering the vector image
at a high resolution into a raster image, and then extracting
curve segments from the rendered raster image as described
above. In another embodiment, the curve segments associ-
ated with the raster image may be extracted directly from the
vector image description. The vector image may be rendered
to produce a corresponding raster image and then the curve
segments may be registered to a coordinate space of the
raster image. This may avoid the step of extracting edges
from the raster image by using the explicit encoding of such
edges within the vector image. In either case, the resulting
infinite resolution texture acceleration data structure
includes a first data structure storing a raster image at an
appropriate resolution and a second data structure that maps
each pixel of the raster image to a list of zero or more curve
segments that influence that pixel.

[0104] In one embodiment, the infinite resolution texture
may implement MIP mapping. MIP mapping is a technique
for storing a hierarchy of down-sampled versions of the
raster image corresponding to different levels of detail. The
level of detail may be calculated based on the ratio of
rendered pixel size to texel size (i.e., comparing the size of
a pixel in the raster image to a size of the pixel in the image
being rendered) during run time. Typically, each level of
detail corresponds to a raster image at a resolution of V4 the
level of detail below it (i.e., LOD 1 corresponds to half the
resolution of LOD 0). The curve segment data only applies
to the base raster image at the highest resolution (i.e., LOD
0). When a texture sample is taken at any other level of
detail, then the sample location is not adjusted according to
the curve segments that influence the corresponding texel.

[0105] FIG. 10 illustrates the data flow to generate and
utilize an IRT acceleration data structure 1000, in accor-
dance with one embodiment. As shown in FIG. 10, an image
1010 is received to generate the IRT acceleration data
structure 1000. The image 1010 may be a raster image or a
vector image in a variety of image file formats (e.g., JPEG,
BMP, SVG, etc.). A preprocessing step 1020 is executed by
aprocessor to generate the IRT 1000. The preprocessing step
1020 may implement the method 100. In one embodiment,
the preprocessing step 1020 is a software program (i.e.,

US 2018/0158227 Al

series of instructions) executed by a CPU. If the image 1010
is a vector image, the preprocessing step 1020 may include
rendering a vector image to generate a raster image at an
appropriate resolution. The preprocessing step 1020 also
implements an edge detection algorithm for identifying a
number of curve segments that influence one or more pixels
in the raster image, as set forth above. In another embodi-
ment, the preprocessing step 1020 may be executed, at least
in part, by a parallel processor, such as PPU 200. For
example, the Jacobian matrices for each pixel of the raster
image may be calculated in parallel, or the metric values
associated with each edge pixel may be calculated in par-
allel. The IRT acceleration data structure 1000 may be stored
in a memory, either volatile or non-volatile, for immediate
use or to be loaded when rendering images at a later point
in time.

[0106] The IRT acceleration data structure 1000 includes
a texture map 1002 that comprises a two-dimensional array
of color values. In some embodiments, the texture map 1002
is a MIP map that stores the down-sampled raster images
that form the MIP map hierarchy. The IRT acceleration data
structure 1000 also includes a curve index map 1004 that
associates each pixel in the texture map with zero or more
curve segments corresponding with the pixel. The curve data
map 1006 stores parameters for each curve segment that
influences the pixels in the raster image.

[0107] A compute step 1030 calculates a sample location
adjustment vector, duv, by determining whether any curve
segments influence a pixel in the raster image 1002 that
corresponds with the sample location x. FIG. 11 illustrates a
technique for calculating an adjustment vector based on a
proximate distance of a sample location from a curve
segment, in accordance with one embodiment. As shown in
FIG. 11, a sample location x is located in a pixel 1110 of the
texture map 1002 in the IRT acceleration data structure
1000. A Voronoi region of curve segment 1120 overlaps the
pixel 1110. The IRT acceleration data structure 1000
includes a curve index map 1004, which has an entry
corresponding to pixel 1110 that stores an index into a curve
data map 1006 that includes parameters for the curve
segment 1120. A distance dc is calculated by accessing the
curve index map 1004 using the texture coordinates for the
sample location x. If the access returns a void value, then
that means no curve segments influence the pixel associated
with the sample location x. In this case, the access returns an
index into the curve data map 1006, which can be accessed
via the index to read the parameters for one or more curve
segments that influence the pixel 1110. The distance dc is
calculated by evaluating function f, as given in Equation 13
or Equation 20. The adjustment vector duv is then calculated
as follows:

duv=(h-dc)n, (Eq. 21)

where h is an assumed size of a convolution kernel that
distorts colors proximate to the edges, and n, is the interpo-
lated normal of the curve segment 1120 corresponding to the
sample location x. In one embodiment, the magnitude of h
is set equal to 2V pixels, which is the length of two pixel
diagonals in the raster image. Again, h is also the distance
from the curve segment to the edge of the truncated Voronoi
region associated with the curve segment and affects which
pixels are influenced by the curve segment. As shown, the
new sample location may be in an entirely different pixel
(e.g., pixel 1130) than the original sample location x.

Jun. 7, 2018

[0108] In one embodiment, anti-aliasing options may be
implemented that affect the calculation of duv. Equation 21
is a monotonically decreasing function with a maximum at
dc=0. The edges can be blurred by decreasing duv when the
distance to the curve dc is below a threshold a. The
threshold o will be less than h such that the adjustment
vector duv moves the sample location x to the edge of the
truncated Voronoi region except when the sample location is
close to the curve (i.e., dc<a), at which point the adjustment
vector duv is reduced such that the sample location x will
stay closer to the edge.

[0109] However, changing the profile of Equation 21 to
implement anti-aliasing is not sufficient since the gradient in
the immediate neighborhood of a curve segment is a local
maximum as a matter of choice. Thus, when decreasing duv
when dc<a, the LOD utilized for sampling the texture map
1002 should also be increased. Because the texels encoded
in higher MIP levels are already down-sampled, these down-
sampled color values can be used to alleviate aliasing in such
samples. It will be appreciated that this anti-aliasing mode is
only implemented when the LOD based on the pixel ration
is zero, indicating that a screen pixel size is less than a texel
size. When the LOD based on the pixel ratio is greater than
zero, no adjustment vector will be calculated and the texture
map at higher MIP levels is simply sampled without calcu-
lating any adjustment vector.

[0110] Returning to FIG. 10, a sampling step 1040
samples the texture map 1002 in the IRT 1000 based on the
adjusted sample location x,,,,,:

X=X orgtduv (Eq. 22)

[0111] The adjustment vector duv, when added to sample
location x, moves the sample location to the edge of the
truncated Voronoi region associated with the curve segment.
This causes the sample values to be taken and interpolated
away from the edge in the image. If multiple curve segments
influence the pixel corresponding to the original sample
location, then multiple intermediate adjustment vectors duv,
are calculated and the adjusted sample location is simply
given by summing all of the intermediate adjustment vectors
and adding the summed vector to the sample location x:

X,

[0112] As with conventional texture maps, the returned
color value is generated via a texture unit that interpolates
four texel values in the texture map 1002 based on the new
sample location x,,,,,,-

[0113] In one embodiment, the texture map 1002 in the
IRT acceleration data structure 1000 is a MIP map and a
level of detail is calculated prior to computing the adjust-
ment vector(s). If the LOD is zero, then adjustment vectors
are calculated at the compute step 1030. However, if the
LOD is anything above zero, then the texture will be
sampled immediately using x,,; at that particular level of
detail since the pixel is larger than a texel and the texture
map being sampled will already have been down-sampled
from the highest resolution texture map to a point where the
adjustment vector may not have the desired effect and wastes
valuable clock cycles (i.e., the adjustment vector may be
significantly smaller than a texel at that level of detail and,
therefore, the new sample location may simply change the
weights in the interpolation and not change which values are
being interpolated).

[0114] Inone embodiment, it will be appreciated that steps
1030 and 1040 may be implemented as instructions included

Xt 2duv; (Eq. 23)

US 2018/0158227 Al

in a pixel shader/fragment shader program executed by PPU
200. Similarly, step 1020 may also be implemented as
instructions included in a pixel shader/fragment shader
program. However, step 1020 will typically be implemented
in a separate program from steps 1030 and 1040.

[0115] FIG. 12 illustrates a flowchart of a method 1200 for
generating a color sample utilizing an IRT 1000, in accor-
dance with one embodiment. It will be appreciated that the
method 1200 is described within the scope of software
executed by a processor; however, in some embodiments,
the method 1200 may be implemented in hardware or some
combination of hardware and software. The method 1200
begins at step 1202, where a processor determines that a
sample location x is influenced by at least one curve seg-
ment. In one embodiment, the processor is PPU 200 and a
shader program includes an instruction that reads the curve
index map 1004 using texture coordinates for sample loca-
tion x. If the value returned from the curve index map 1004
is void, then no curve segments influence the pixel associ-
ated with sample location x. However, if the value returned
from the curve index map 1004 is not void (i.e., the returned
value is an index into the curve data map 1006), then the
sample location x is influenced by at least one curve seg-
ment. The parameters for a curve segment may be read from
the curve data map 1006 using the index read from the curve
index map 1004.

[0116] At step 1204, a processor estimates a distance, dc,
of the sample location X to the curve segment based on the
parameters read from the curve data map 1006. The distance
dc may be calculated by evaluating the function f of
Equation 13 or Equation 20, depending on the form of
parameters stored in the curve data map 1006. At step 1206,
a processor determines an adjustment vector based on the
distance dc. The adjustment vector may be calculated using
Equation 21. In some cases, multiple curve segments influ-
ence the pixel and, therefore, the adjustment vector is a sum
of a plurality of intermediate adjustment vectors calculated
for each of the influencing curve segments.

[0117] At step 1208, a processor calculates a new sample
location based on the adjustment vector. The adjustment
vector duv may be added to the sample location to determine
the new sample location. At step 1210, a processor samples
the texture map 1002 using the new sample location.
[0118] In one embodiment, method 1200 is only per-
formed if a level of detail (LOD) calculated based on a pixel
ratio (i.e., a ratio of pixel size in the image being rendered
to texel size) is zero. If the LOD is greater than zero, then
the texture map 1002 may be sampled immediately using the
sample location X.

[0119] FIG. 13 illustrates a flowchart of a method 1300 for
detecting edges in an image, in accordance with one embodi-
ment. It will be appreciated that the method 1300 is
described within the scope of software executed by a pro-
cessor; however, in some embodiments, the method 1300
may be implemented in hardware or some combination of
hardware and software. The method 1300 begins at step
1302, where an image is received. The image is a raster
image encoded as a 2D array of pixel values at a particular
resolution. In one embodiment, the image may be resampled
at a different resolution to have a desired resolution of the
IRT 1000.

[0120] At step 1304, an edge strength and gradient direc-
tion are determined for each pixel in the image. In one
embodiment, a Jacobian matrix J is calculated for each pixel

Jun. 7, 2018

using the Scharr operator applied to each color component
of'the image. The edge strength of the pixel may be set to the
maximum eigenvalue associated with the matrix J*J and the
gradient direction may be given by the corresponding eigen-
vector for the maximum eigenvalue.

[0121] Atstep 1306, a set of edge pixels is identified based
on the edge strengths and gradient directions for the pixels
in the image. In one embodiment, a non-maximum suppres-
sion step is used to invalidate all pixels in the image that do
not have a local-maximum edge strength along the gradient
direction associated with the pixel.

[0122] Atstep 1308, a set of metric values is calculated for
each edge pixel. Each set of metric values includes a metric
value corresponding to each neighboring edge pixels to the
edge pixel. At step 1310, the edge pixels are connected into
subsets of edge pixels corresponding to discrete curves, each
curve may include multiple curve segments. In one embodi-
ment, curves may be suppressed (i.e., edge pixels included
in the subset of edge pixels for the curve may be invalidated)
when a mean edge strength for all edge pixels in the subset
is below a threshold value o. At step 1312, Bezier curve
segments are fit to each subset of edge pixels to identify a
plurality of curve segments. Straight segments may be
encoded as Bezier curve segments where all control points
lie on the straight line. The control points that define a Bezier
curve segment may be used to calculate the necessary
parameters for encoding the curve segment in the curve data
map.

[0123] FIG. 14 illustrates an exemplary system 1400 in
which the various architecture and/or functionality of the
various previous embodiments may be implemented. As
shown, a system 1400 is provided including at least one
central processor 1401 that is connected to a communication
bus 1402. The communication bus 1402 may be imple-
mented using any suitable protocol, such as PCI (Peripheral
Component Interconnect), PCI-Express, AGP (Accelerated
Graphics Port), HyperTransport, or any other bus or point-
to-point communication protocol(s). The system 1400 also
includes a main memory 1404. Control logic (software) and
data are stored in the main memory 1404 which may take the
form of random access memory (RAM).

[0124] The system 1400 also includes input devices 1412,
a graphics processor 1406, and a display 1408, i.e. a con-
ventional CRT (cathode ray tube), LCD (liquid crystal
display), LED (light emitting diode), plasma display or the
like. User input may be received from the input devices
1412, e.g., keyboard, mouse, touchpad, microphone, and the
like. In one embodiment, the graphics processor 1406 may
include a plurality of shader modules, a rasterization mod-
ule, etc. Each of the foregoing modules may even be situated
on a single semiconductor platform to form a graphics
processing unit (GPU).

[0125] In the present description, a single semiconductor
platform may refer to a sole unitary semiconductor-based
integrated circuit or chip. It should be noted that the term
single semiconductor platform may also refer to multi-chip
modules with increased connectivity which simulate on-chip
operation, and make substantial improvements over utilizing
a conventional central processing unit (CPU) and bus imple-
mentation. Of course, the various modules may also be
situated separately or in various combinations of semicon-
ductor platforms per the desires of the user.

[0126] The system 1400 may also include a secondary
storage 1410. The secondary storage 1410 includes, for

US 2018/0158227 Al

example, a hard disk drive and/or a removable storage drive,
representing a floppy disk drive, a magnetic tape drive, a
compact disk drive, digital versatile disk (DVD) drive,
recording device, universal serial bus (USB) flash memory.
The removable storage drive reads from and/or writes to a
removable storage unit in a well-known manner.
[0127] Computer programs, or computer control logic
algorithms, may be stored in the main memory 1404 and/or
the secondary storage 1410. Such computer programs, when
executed, enable the system 1400 to perform various func-
tions. The memory 1404, the storage 1410, and/or any other
storage are possible examples of computer-readable media.
[0128] In one embodiment, the architecture and/or func-
tionality of the various previous figures may be implemented
in the context of the central processor 1401, the graphics
processor 1406, an integrated circuit (not shown) that is
capable of at least a portion of the capabilities of both the
central processor 1401 and the graphics processor 1406, a
chipset (i.e., a group of integrated circuits designed to work
and sold as a unit for performing related functions, etc.),
and/or any other integrated circuit for that matter.
[0129] Still yet, the architecture and/or functionality of the
various previous figures may be implemented in the context
of'a general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired sys-
tem. For example, the system 1400 may take the form of a
desktop computer, laptop computer, server, workstation,
game consoles, embedded system, and/or any other type of
logic. Still yet, the system 1400 may take the form of various
other devices including, but not limited to a personal digital
assistant (PDA) device, a mobile phone device, a television,
etc.
[0130] Further, while not shown, the system 1400 may be
coupled to a network (e.g., a telecommunications network,
local area network (LLAN), wireless network, wide area
network (WAN) such as the Internet, peer-to-peer network,
cable network, or the like) for communication purposes.
[0131] While various embodiments have been described
above, it should be understood that they have been presented
by way of example only, and not limitation. Thus, the
breadth and scope of a preferred embodiment should not be
limited by any of the above-described exemplary embodi-
ments, but should be defined only in accordance with the
following claims and their equivalents.
What is claimed is:
1. A method, comprising:
receiving an image;
generating an infinite resolution texture (IRT) accelera-
tion data structure associated with the image, wherein
the IRT acceleration data structure includes a texture
map, a curve index map, and a curve data map; and
storing the IRT acceleration data structure in a memory,
wherein the texture map includes a two-dimensional array
of texels, each texel encoding a color value based on
the image,
wherein the curve data map encodes parameters for at
least one curve segment associated with the image, and
wherein the curve index map associates each texel in the
texture map with zero or more curve segments corre-
sponding with the texel.
2. The method of claim 1, wherein generating the IRT
acceleration data structure associated with the image com-
prises:

Jun. 7, 2018

analyzing the image utilizing an edge detection algorithm
to identify a plurality of curve segments associated with
the image;

defining a truncated Voronoi region for each curve seg-

ment in the plurality of curve segments; and
generating the curve index map and the curve data map
based on the truncated Voronoi regions.
3. The method of claim 2, wherein analyzing the image
comprises:
for each pixel in the image, determining an edge strength
and a gradient direction for the pixel based on a
Jacobian matrix J corresponding to the pixel;

identifying a set of edge pixels in the image based on the
edge strengths and gradient directions for the pixels in
the image;

for each edge pixel in the set of edge pixels, calculating

a set of metric values corresponding to neighboring
pixels for the edge pixel;

connecting subsets of edge pixels based on the metric

values; and

fitting a Bezier curve segment to each subset of edge

pixels to identify the plurality of curve segments.
4. The method of claim 1, wherein the image is a vector
image, and wherein the texture map is generated by render-
ing the vector image at a particular resolution.
5. The method of claim 1, further comprising:
determining an adjustment vector for a sample location
based on parameters stored in the curve data map; and

sampling, via a texture unit associated with a parallel
processing unit, the texture map based on a new sample
location calculated by adding the adjustment vector to
the sample location.

6. The method of claim 5, wherein determining the
adjustment vector comprises:

estimating a distance of the sample location to a curve

segment based on parameters for the curve segment
stored in the curve data map; and

determining the adjustment vector by multiplying a dif-

ference between the distance of the sample location to
the curve segment and a parameter h by an interpolated
normal vector to the curve segment.

7. The method of claim 5, wherein determining the
adjustment vector comprises:

estimating distances of the sample location to a plurality

of curve segments based on parameters for the plurality
of curve segments; and

determining the adjustment vector by summing a plurality

of intermediate adjustment vectors corresponding to
the plurality of curve segments, wherein each interme-
diate adjustment vector is calculated by multiplying a
difference between the distance of the sample location
to a corresponding curve segment and a parameter h by
an interpolated normal vector to the corresponding
curve segment.

8. The method of claim 1, wherein the texture map is a
MIP map.

9. The method of claim 8, further comprising:

determining a level of detail (LOD) for sampling the MIP

map; and

if the LOD is greater than zero, then immediately sam-

pling the MIP map at the LOD according to a sample
location, or

if the LOD is equal to zero, then determining an adjust-

ment vector for the sample location based on param-

US 2018/0158227 Al

eters stored in the curve data map and sampling the
MIP map at the LOD according to a new sample
location calculated by adding the adjustment vector to
the sample location.

10. A system, comprising:

a memory storing an image; and

a processor configured to:

generate an infinite resolution texture (IRT) accelera-
tion data structure associated with the image,
wherein the IRT acceleration data structure includes
a texture map, a curve index map, and a curve data
map, and
store the IRT acceleration data structure in the memory,
wherein the texture map includes a two-dimensional array
of texels, each texel encoding a color value based on
the image,
wherein the curve data map encodes parameters for at
least one curve segment associated with the image, and

wherein the curve index map associates each texel in the
texture map with zero or more curve segments corre-
sponding with the texel.

11. The system of claim 10, wherein generating the IRT
acceleration data structure associated with the image com-
prises:

analyzing the image utilizing an edge detection algorithm

to identify a plurality of curve segments associated with
the image;

defining a truncated Voronoi region for each curve seg-

ment in the plurality of curve segments; and
generating the curve index map and the curve data map
based on the truncated Voronoi regions.
12. The system of claim 11, wherein analyzing the image
comprises:
for each pixel in the image, determining an edge strength
and a gradient direction for the pixel based on a
Jacobian matrix J corresponding to the pixel;

identifying a set of edge pixels in the image based on the
edge strengths and gradient directions for the pixels in
the image;

for each edge pixel in the set of edge pixels, calculating

a set of metric values corresponding to neighboring
pixels for the edge pixel;

connecting subsets of edge pixels based on the metric

values; and

fitting a Bezier curve segment to each subset of edge

pixels to identify the plurality of curve segments.
13. The system of claim 10, wherein the image is a vector
image, and wherein the texture map is generated by render-
ing the vector image at a particular resolution.
14. The system of claim 10, the processor further config-
ured to:
determine an adjustment vector for a sample location
based on parameters stored in the curve data map; and

sample, via a texture unit associated with a parallel
processing unit, the texture map based on a new sample
location calculated by adding the adjustment vector to
the sample location.

Jun. 7, 2018

15. The system of claim 14, wherein determining the
adjustment vector comprises:

estimating a distance of the sample location to a curve

segment based on parameters for the curve segment
stored in the curve data map; and

determining the adjustment vector by multiplying a dif-

ference between the distance of the sample location to
the curve segment and a parameter h by an interpolated
normal vector to the curve segment.

16. The system of claim 14, wherein determining the
adjustment vector comprises:

estimating distances of the sample location to a plurality

of curve segments based on parameters for the plurality
of curve segments; and

determining the adjustment vector by summing a plurality

of intermediate adjustment vectors corresponding to
the plurality of curve segments, wherein each interme-
diate adjustment vector is calculated by multiplying a
difference between the distance of the sample location
to a corresponding curve segment and a parameter h by
an interpolated normal vector to the corresponding
curve segment.

17. The system of claim 10, wherein the texture map is a
MIP map.

18. The system of claim 10, the processor further config-
ured to:

determine a level of detail (LOD) for sampling the MIP

map; and

if the LOD is greater than zero, then immediately sample

the MIP map at the LOD according to a sample
location, or

if the LOD is equal to zero, then determine an adjustment

vector for the sample location based on parameters
stored in the curve data map and sampling the MIP map
at the LOD according to a new sample location calcu-
lated by adding the adjustment vector to the sample
location.

19. The system of claim 10, wherein the processor is a
parallel processing unit that includes at least one texture unit
configured to sample the texture map.

20. A non-transitory, computer-readable storage medium
storing instructions that, when executed by a processor,
cause the processor to perform steps comprising:

receiving an image;

generating an infinite resolution texture (IRT) accelera-

tion data structure associated with the image, wherein
the IRT acceleration data structure includes a texture
map, a curve index map, and a curve data map; and
storing the IRT acceleration data structure in a memory,
wherein the texture map includes a two-dimensional array
of texels, each texel encoding a color value based on
the image,
wherein the curve data map encodes parameters for at
least one curve segment associated with the image, and

wherein the curve index map associates each texel in the
texture map with zero or more curve segments corre-
sponding with the texel.

#* #* #* #* #*

